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The active cache hierarchy as described in the Reduced Architecture Multicore Processor (RAMP) will require an efficient mutual exclusion and inter-process communication support in order to maintain effective cache coherence.   The conventional on-demand update when a cache miss is detected requires a 2log2 n – 1 roundtrip for a hierarchy with log2 n levels of caching.  A roundtrip is required because we assume we need a response from each higher level when the data is synchronized.  In the RAMP model, the associate thread of each parallel process updates the local cache constantly in the background, thus statistically reducing the average roundtrip time to log2 n.  In addition, since an update request by a single process will need to exclude access to the shared memory by other processes, a locking mechanism must be in place. Traditional mutices and spinlocks are used to cover critical regions of code in order to protect the integrity of shared memory.   These mechanisms are deployed in high-level code that might incur additional latency.  Moreover, the asynchronous nature of the locking mechanism renders it difficult to measure the efficiency.  Finally, in order to support the active cache coherence in the RAMP, a mechanism for mutual exclusion is required at the level of the cache update – that is, directly over the raw, shared memory itself.  Therefore, we propose a mutual exclusion procedure that is indigenous to the associate thread that updates the cache constantly.  There are two main advantages for this type of mutual exclusion: 1) The responsibility of maintaining the consistency of shared data is relieved from the application.  The application can assume that background process will support the integrity of shared data without having to rely on complex algorithm in the application, and 2)  At the cache hierarchy level, the only purpose for the associate threads is to update the cache constantly, assuring that it is always coherence in respect to all the processes sharing the same data.  In the case with the associate processes in the RAMP model, a process obtains a lock, updates the shared memory, and then right away releases
the lock.  There is no additional processing other than synchronizing the shared

memory with the cache.  That implies that the time spent inside a lock is deterministic and always bounded. 
As we shall see, a distributed queuing model will serve this purpose well. We can look to some classic implementation of distributed mutual exclusion such as the Lamport or 

Ricart-Agrawal algorithm with cost at O(m) messages for each synchronization of the locks.  In order to support the above algorithms, atomic inter-process communication is required.  Fundamentally, message passing can be implemented by shared memory.  However, since our issue here is shared memory synchronization, we would not be able to pass messages correctly without some kind of primitive mechanism that can synchronize the messages in the first place.  For that, we might assume that there is an atomic operation that allows messages to be passed atomically among processes, perhaps supported by the underlying hardware features.  The cost of synchronizing each message should be T.   If we adopt either the Lamport or Ricart-Agrawal algorithm, whenever an associate process is ready to synchronize the cache, it would send a request to the other processes and put itself in the queue.  After some number of messages are exchanged, this process will be allowed to have exclusive access to the shared data.   The longest wait in turn for updating would be by a factor of p, the number of active parallel tasks that share the same data, since there should be no more than p process waiting in a queue at any one time.

Thus synchronization process is done in the background by the associate threads.  When

the main thread accesses any memory, it is guaranteed by the low-level associate thread

that it has the latest synchronized data.  If we use the Lamport Algorithm which requires 3(n – 1) messages for obtaining the lock, the statistical average is 3(n – 1)/2 (because any number of message might have already been transmitted, or the associate thread is already working inside the critical area) plus the average of the log2 n steps for updating the cache once the lock is obtained, whereas the on-demand update will require 3(n – 1) message plus 2log2 n -1 steps, because the process will have to put itself in the queue and then traverse all the cache levels for the update.  Note that if the update is on-demand, each update will require access of a lock and then the complete traversal of the cache
hierarchy.   In the case with the Lamport algorithm, the process that requests an update will first exchange 3n – 1 messages to obtain a lock to go in and exit the critical area before traversing the cache hierarchy for the update.

Note that by moving the mutex from the application down to the cache synchronization process, deadlocks still might exist.  Letting the associate threads synchronize the cache update expedites the critical sections, but it does not change the potential of deadlocks. 
With this reduced architecture in place, we go back to an earlier model, where we have n parallel tasks that need to synchronize at some point:
for (i = 1; i <= 40; i++)

{


array[i] = i;


sum += i;

}

The above for loop are broken down into 4 parallel tasks:

for (i = 1; i <= 10; i++)

{


array[i] = i;


lock(sum);


sum += i;


unlock(sum);

}

for (i = 11; i <= 20; i++)

{


array[i] = i;


lock(sun);


sum += i;


unlock(sum);

}

for (i = 21; i <= 30; i++)

{


array[i] = i;


lock(sum);


sum += i;


unlock(sum);

}

for (i = 31; i <= 40; i++)

{


array[i] = i;


lock(sum);


sum += i;


unlock(sum);

}

Ignoring the sum variable in the above, and assuming that the locking mechanism for the array is fine-grained, the improvement through parallelism is roughly a factor of 4.  The overheads for starting up and scheduling the parallel task are constant.  Assuming a uniform memory access cost, the most significant additional cost is the synchronization of the sum variable.   The worst case scenario is when all 4 tasks are accessing the same variable.  Then 1 task will have exclusive access, the second task blocks for the first task to finish, the third task blocks for the first 2 tasks, and the fourth task blocks waiting for the other 3 tasks.  Thus the synchronization overhead is bounded by N, the number of tasks.  According the Amdahl’s Law, the speedup with 4 processors (but 8 cores!) in this case will be


1/(s + p/8)

considering the memory contention overhead is the serial part, s, which is a variable at O(N).  Then the focus becomes minimizing the serial part by utilizing the multi-core features.   If we desire a 200% speed up with 8 cores, 


1/((1 – p) + p/8) = 2


1 – p + p/8 = ½


8 - 7p = 2 


p = 6/7
The serial part s is required to be only 1 – p = 1/7
but s is O(4), then ideally, the cost for the memory contention overhead (waiting for lock) should be constrained at below 1/28 , or roughly 3.5% of the processing.   

We know that statistically, if we apply the Lamport Algorithm, the average update cost for the n main tasks is 3(n – 1)/2 + log2 n (a reduction with the aid of the associate tasks running in the background).  When n = 4 (include only the main tasks), then it is 9/2 + 2 = 6.5.  If we use this as the  3.5% of the cost when the algorithm is parallelized.  Then the cost of the entire process is roughly 185.  Since this is a 200% speedup, that implies the original cost without parallelism is 370.  That really means, if we have an original problem that costs 370 or less to run in a single processor, using 4 processors each with 2 cores (one core for the main thread, and the other for the associate thread) and the Lamport Algorithm for synchronizing the cache hierarchy of log2 n levels, we will be able to achieve a 200% speedup with the RAMP model.
In this model, once we have chosen a synchronization algorithm for the cache and the depth of the cache hierarchy, the average cost for each update is constant.  Moreover, barring deadlocks, the cache synchronization normally is the only serial cost of the parallel tasks.  Each main task, with an associate task assisting in the background, can

reduce its average cost of synchronization by roughly 50%.   The next step, I believe, is
to bench mark this framework with other types of parallel programming that use on-demand serialization.

