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Introduction

Traditional learning algorithms model biological human behaviors in perceiving and organizing data, and subsequently extracting information by some heuristic experiments.   In particular, the engineering process of imitating the human analysis and inference of data often focuses on a specific problem and provides a customized solution for the issues at hand.  This approach allows a great deal of freedom in the design and implementation of very diverse strategies, but often makes it difficult to formalize the algorithms analytically for generalization and optimization.  At the opposite end of the spectrum, modern methods of statistical modeling of Machine Learning seek to generalize the adaptive process with algorithms that are not necessarily related to the biological or social behavior, but are more tractable for quantitative analysis and optimization.  In order to be able to formalize the Machine Learning system in terms of the data and inference, and quantify the training and decision processes analytically,  the statistical approach is often more viable, although it is more restrictive in the choice of models and the actual design of the algorithm.
In recent years, with the advent of fast computers and sophisticated software, statistical modeling of Machine Learning has taken on a new life, and analytical algorithms are being applied successfully in many areas of industry and research: Data Mining, Classification, Bio-Informatics,  Pattern Recognition, Intrusion Detection, etc.  Fundamentally, the advantage of statistical modeling is the power in generalization and optimization.  The formalization of the structure of data sets and the algorithms for training and decision allow the learning process to be understood and quantified analytically.  The statistical heuristics provide the direction and strategy for optimization.  Moreover, the underlying mathematical structure makes it relatively efficient to extend the statistical model by combining and expanding mathematical properties of the data set and training process, or transform decision algorithms by manipulating and adjusting parameters and weight factors.  As result, one of the notable recent development in statistical Machine Learning is the Local Learning paradigm.
By Local Learning, we mean a methodology that does not use the complete, or Global collection of data set for training or testing.  In essence, the Global Learning method processes and derives information from the complete data set, and conclusively arrives at a universal approximation function for predicting all future input patterns within the data space.  In Global Learning, the training algorithm is run on the complete data set until the optimal decision function is obtained.  Subsequently, unknown data patterns can be tested and classified by this decision function.  In most cases, the Global Learning method implies a density distribution for the entire data space and a confidence level on recognizing new data points. 
By contrast, the Local Learning model works on a subset of the available training data at a time.   The purpose of Local Learning is not so much to find a universal decision function for all data patterns. Rather, it focuses on the specific task at hand and seeks a solution for a specific data point.  Different areas in the data set might require different properties in the local algorithm  Thus, a local training algorithm based on the chosen subsets can render multiple and diverse decision functions which can be optimized and combined to provide to solve the complete dataset.   Moreover, in the case when a local algorithm is run for each new data pattern, the Local Learning process can be very computation-intensive.
The Motivation for Local Learning
In Machine Learning, the specific training process and method of generalization are often determined by the structure of the data set: the dimension and characteristics of the attributes, the size of the data, and its relationship with the decision space.    In addition, the might be some a priori knowledge on the distribution of the training data.  The traditional Global Learning approach intends to capture the characteristics of all the data attributes within the feature space, not only based on currently available data, but with some assumption on all future data pattern.  In other words, Global Learning ordinarily does not accommodate for generalization of changing hypotheses on account of unstable values in data attributes.  One issue is training data might not be evenly distributed, causing the global training process to be skewed.    Even with a strong learning algorithm, the unevenness in the data set can lead to good decision near area of well-represented training data and miscalculation at poorly sampled areas (high capacity).  On the other hand, if the algorithm is tweaked to compensate for poorly sampled data to mitigate misclassification, it may lead to rejection of well-represented data (low capacity).
In general, the Global Learning approach implies a density distribution, associated with a decision function that is complete (all test data are accepted) and consistent (accurate decision based on a pre-defined criterion, eg acceptable loss rate).   Intuitively, these cannot be realized unless the training data set is well-represented and evenly distributed, which is not the case most of time.  Moreover, requiring this type of “well-behaved” training data defeats the fundamental purpose of Machine Learning, which is to infer the characteristics of unknown data from whatever is available at hand.
As such, Global Learning models the trend of data distribution in the data space and makes predictions accordingly.  This is a very intuitive notion and is designed to work well if the density distribution and associated parameters are chosen optimally.  To this end, this approach requires certain a priori or assumed knowledge about the training data set.  As a simple example, shown below to correlate temperature and traffic to the Cape
using a Naïve Bayesian algorithm:

Training Data Set:





No Traffic Jam
Traffic Jam

Temperature
  
83


85


70                               80

68                               65

64


72

69


71





75




75







72








81




I
Total


9


5


Mean


73


74.6


Std dev

6.2


7.9

Input Pattern:




Temperature = 66

Assuming the distribution of the training data is normal with the above mean and standard deviation, the likelihoods of the input pattern are:


P(temperature = 66 | no traffic jam) = 0.0340


P(temperature = 66 | traffic jam) = 0.0291

Using the Bayesian formula:


P(traffic jam | temperature = 66) = 

0.0291






----------------------------  =  0.461






   0.0340 + 0.0291





Table 1

This simple machine learns from the statistics of the existing data and uses them to predict the new unknown pattern.  The critical element here is the assumption on the normal distribution of the data.
Ultimately, indeed, it is the data set and data space that determine the learned distribution.   The quality of the learning algorithm, then, will depend on how effective the arbitrary choice of the prior.   A frequentist approach to the same problem might offer a more “reasonable” alternative for the estimate of the prior:
Training Data Set:



Temperature

No Traffic Jam
Traffic Jam

  

Hot


2


2




Mild


4


2




Cool


3


1



Total



9


5

Input Pattern:

Temperature = cool


P(temperature = cool | no traffic jam) = 3/9 =  0.33


P(temperature = cool | traffic jam) = 1/5 = 0.2

Using the Bayesian formula:


P(traffic jam | temperature = cool) = 

0.2







--------------------- = 0.377






       0.33 + 0.2





Table 2

Although the second model above applies the same Bayesian formula, the distribution of the training data are derived from the actual existing data, which might be considered a more valid prior. 
The above exercises demonstrate that by changing the way data attributes are represented, different models and results can be effected.

There are other issues with the structure of Global training data:  The distribution can be non-linear, or they can be derived from several varied distributions, high dimension and small size of training data, or noise (unrecognizable attributes) in the data.  While the quality of a learning algorithm is general measured by the rate of error, the capacity (completeness and consistence) is a practical concerned.  
Local Learning methods, rather than modeling universal data to estimate the distribution, focuses on a specific data pattern, given a subset of training data that are directly related to the task at hand.  The simplest example of Local Learning applies the following procedure:

1) Given a test data point x0, find the closest points among the training data set through some distance or similarity measure

2) Define a vicinity or neighborhood in n dimension, with x0 as the center of the n-dimensional ball
3)  Run the learning algorithm using only the training points included inside the
       neighborhood of x0
4) After the machine has been train, run the decision algorithm on the input pattern x0.
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Figure 1
Firstly, this is a Lazy Learning algorithm, as the machine is not trained until an input data pattern needs to be classified.   Moreover, for each unclassifed data pattern xn, a new neighborhood has to be defined accordingly – thus choosing a different set of tranining data, and the training algorithm has to be run again for each xn.  This is labor and computation-intensive, but does solve several issues:  By localizing the training data relative to the input data pattern, effectively, the attributes contributing to the geometric location of the data points can be eliminated.   Since the algorithm is not seeking a solution for all the unknown data points, the formulation of the hypothesis can be more relaxed and simplified.  For example, the prior information of the local training data can be made arbitrary, without consideration of the universal data set.  The idea is to focus on the distribution of a group of data similar to the single input pattern at hand.   A local assumption may not be universally correct, but still serves the purpose of predicting the input pattern.  The capacity of the machine can be managed by manipulating the locality of the training data.  Since local algorithms always focus on a specific point, intuitively, it should be more efficient and accurate than its global counterpart.  Here is a toy example: 
We collect training data on dress code from around the world and use it to train a machine to decide whether the subject is a man or woman.  A globally trained algorithm will probably always designate the test subject a woman, if the subject is observed to wear a skirt.  This decision is inaccurate, if the subject happens to be Scottish.  Given the small percentage of Scottish subjects, it incurs a small overall error rate globally, but produces very inaccurate results when the algorithm is being applied on the population of Scots.  

Alternatively, if the Local Learning is applied, running the same learning algorithm, a Scottish subject will be predicted by the machine trained with a data set most similar to the subject, thus achieving a high rate of accuracy.  Moreover, the attributes that determine the nationality, race, and locality of the subject can be eliminated to reduce the dimension. Because all the chosen test data points (Scotsmen) around the subject will have these same attributes.
Indeed, the “local” attributes in the training set can determine the local decision function.  The well-known Local Learning methods - the k-Nearest Neighbors algorithm, relies entirely on the geometric vicinity of the training data to the subject to decide the output.
Many other popular algorithms employ local methods of divide-and-conquer to reduce an intractable problem to several less complex sub-problems.   The practice of Bagging, Boosting, and Cross-Validation all run algorithms on subsets of training data to produce local decision functions, which are ultimately used to predict universal data.
In some instances, local methods can be applied to problems that do not have a natural linear solution.  The so-called “XOR”-type of data points that cannot be classified by a simple linear model, such as the Perceptron.   This problem can be easily solved by a Local Learning model because the training data are locally linearly separable.
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                                             Figure 2
Some local methods, instead of finding the locality strictly around the input pattern, seeks selected local training points to generalize the global decision.  The Radial Basis Function assumes density distributions can be found in clusters in the data set, which certain “attractor” points at the center of each cluster.  Each cluster is then trained with a local algorithm suitable for the assumed distribution.  The resulting decision functions are then combined and averaged out for predicting unseen global patterns.
In recent years, the Support Vector Machine has taken center stage in the Local Learning arena.  The SVM applies the training algorithm on selected local data points in order to find the optimal hyperplane in terms of the widest margin between the hyperplane and the closest local points to the hyperplane.  The SVM is a linear model.   If hyperplanes exist for the training data, there is one hyperplane that is optimal – in the sense that this hyperplane has the greatest orthogonal margin from any point in the training data set.  These points with the widest margin and closest to the hyperplane are called Support Vectors, because based on the training algorithm, these points alone determine the hyperplane, and thus the decision function.  No other training points besides the support vectors contribute to the decision function.  The strength of the SVM is in the transformation of linear model to non-linear ones using the “kernel trick” to map the training data to a higher-dimension feature space.
As mentioned above, the SVM uses only a few local training points for the decision function.  Therefore, it does not retain global information and the general structure of data set.  The SVM is very stable – not affected by the variation of unknown data, but not well-suited for predicting future data trend.  In this respect, the SVM is suitable for problems with data distributions that have a well-structured linear boundary, or can be transformed to have a clear linear boundary in a higher feature space.
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