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The MBRP (Macro Block Region Partition) algorithm developed by Sun, Wang, and Chen
 serves to demonstrate a practical and effective approach in solving a generic, large problem with parallel computing.  By generic we mean that it is not considered a conventional scientific computing problem that has specific properties of substructure partition and self-similarity that lends itself naturally to a divide-and-conquer methodology.   In fact, this algorithm which breaks down a large MPEG data block into equal-size smaller partitions is not easily parallelized because of the process ordering dependencies between the small blocks – that some blocks have to wait for information from previously processed blocks to become available before getting processed.  However, H.264 encoding is a straightforward, but computation-intensive process that can benefit from having multiple processes working on the smaller partitions at the same time.  Given these properties, H.264 encoding is an ideal prototype for modeling a solution in multi-computing because of these key properties:

· the problem is large and requires heavy computation

· the natural solution is direct and simple, but time-consuming

· the problem does not lend itself to partitioning by substructures

· the sub-problems may not be processed independently and require 

synchronization and communication

The last condition above requires the parallel algorithm to deal with significant serial overheads, which normally is the main challenge in parallel computing.

As such, a number of algorithms in parallelizing H.264 encoding have been developed (See references in the MBRP paper).  The Macro Block Region Partition presents a “wave-front” technology where the subdivisions of the problem are processed in a strict schedule assigned to different processors, each is responsible for working on a sub-problem.  The schedule is necessary because of the inter-dependence of the sub-problems.  It is interesting that the authors have pointed out the different complexities in the encoding make it very difficult to distribute the functional workload uniformly to different processors, thus making task pipe-lining infeasible.  However, the wave-front methodology shows a sort of assembly-line process because each sub-problem may have temporal and spatial dependencies on other sub-problems.  
The MRBP algorithm can be summarized as follows:

1) Subdivide an H.264 frame evenly and uniformly into smaller, proportional macro blocks

2) Organize the macro blocks in rows

3) To encode each macro block, the blocks to its left, top, and top-right must already have been processed, unless such blocks does not exist (eg. a block in the leftmost column of the frame has no block to the left)

Technically, the current macro block being processed is the motion vector (MV), and the three blocks it depends on are called predicted motion vectors (PMV).  In order to encode the macro block correctly and efficiently, the differences between the PMV and the MV must be computed.  The diagram below displays the wave-front technique in progress.
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            Figure 1      
Since the size of the sub-problems can be arbitrary, the solution for this problem can be formulated such that there is always a separate processor available to be assigned to run the parallel algorithm for a sub-problem (ie. a macro block.)   However, because of the above-mentioned inter-dependence, the processors cannot be all started at the same time.  In the beginning, some processors must wait for some others to finish their tasks.  Moreover, towards completion of the big frame, some processors will be freed up and become available.  To utilize all the available processors efficiently, the processors should start as soon as possible as a macro block is ready to be processed (ie its PMV are completely processed), and the processors should be freed up quickly so they can be used for the next big frame.  In other words, if a large frame is sub-divided into n x m macro blocks, even if n x m processors are available, this algorithm will not be able to utilize all n x m processors at the same time.  In fact, fewer than n x m processors will ever be active at the same time.
Applying the straight MBRP algorithm on a 5 x 5 frame, we see the following waiting pattern:

     Time line:    t0  t1   t2    t3   t4  t5         

                                       
	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	




Stage 1

The first block starts processing at t0. 1 processor is active between t0 and t1.

[ Note: tx denotes the completion time of a macro block.  It is assumed that the time required for processing each block is uniform, since the processor is running the same algorithm on data of same size. ]
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Stage 2
In Stage 2 above, the first block on the top row has been processed at t1, and the second block has started. Still 1 processor active.  When it completes at t2,:
In Stage 3, the first block in row 2 can be started, because its top and top-right block has finished.  Now there are 2 processors active at the same time.
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Stage 3
In Stage 4, still 2 processors are active simultaneously:
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Stage 4

Stage 5 –  As the last macro block on the first row is being completed between t4 and t5, the first 2 blocks on row 2 have been completed.  Now a third processor can be started to process the first block on row 3:
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Stage 5
Stage 6: At t5 when the first row has been completed, it is back to 2 processors being utilized at the same time.
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Stage 6
Stage 7: At t6 when the second row on the last block, a third processor is started for the first block on the fourth row:
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Stage 7

Stage 8: At t7 the second row is completed.  Only 2 processors can be active at the same time.

  t0  t1   t2    t3   t4  t5

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	




Stage 8

Stage 9: At t8, a third processor starts processing the first block of the fifth row:
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Stage 9
Continuing the procedure, we see the following pattern of processor usage:
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Table I

In general, when the MPEG4 frame is sub-divided into n x m (row x column) macro blocks, the time required to complete all the macros blocks is 2n + m - 2, given there are as many processors needed available.  Here is the proof :

Given an MPEG4 frame sub-divided into n x m (rows, columns) macro blocks, the time required to complete the top row is m.  Each row below starts only after the top and top-right blocks above are completed.  Therefore, each row below is always 2 block-time behind the row above, assuming we can use all the processors we needed.   The last row to finish, ie the nth row, will be 2(n – 1) blocks behind the top row, because the last row cannot start its first block until the n – 1 row above it all have completed at least 2 blocks.  If n <= m,  by the time the top row is done, the additional time needed to complete the last row is 
2(n – 1).  Therefore, the total time required will be 2n + m - 2.  If n > m, the nth row is started after 2(n – 1) block-time, and it will take m additional time to complete the nth row.  Thus the total time required is also 2n + m – 2.  We also note that in both cases, 2n + m – 2 => 2 * min(n, m) for n, m > 1.
Here is the generalization on processor usage with n x m-block frame:

Considering a separate processor is activated for each macro block and deactivated when the macro block processing completes, there are in total n x m processors being activated in the processing of the entire frame.  The average processor usage is then


1


if n or m = 1

(n * m)/(2n + m – 2)   otherwise, and  (2n + m – 2) => 2 * min(n, m)
Essentially, the algorithm assigns a single process for a macro block in each row that is ready for processing, and on each row, there can only be 1 macro block being processed at a time.   Therefore, the maximum number of processors being active simultaneously is related to the maximum number of rows being processed.    For the trivial cases where n or m = 1, the maximum processor usage is 1.  For all other cases n, m > 1, since each macro block can only be processed when the row above it has completed processing the top and top-right blocks,  when the first macro block in a row has started processing, the maximum number of rows above it that have macro blocks still under process cannot exceed (m – 1)/2.  So the peak process usage is

1


if n or m = 1


lower((m – 1)/2) + 1
if n => lower((m – 1)/2) + 1


n


if n < lower((m – 1)/2) + 1

In the following we present a modified version of MBRP:  Instead of processing each macro blocks horizontally by the row, we process the blocks diagonally.  The process is depicted graphically in figure 2 below:
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Basically, the diagonal macro blocks of a large frame are picked and processed from left to right, top to bottom, until all the macro blocks are consumed.   We observe the following properties of the algorithm:

1) Every macro block starts from the top-left corner and ends at the bottom-right corner.

2) A previously inactive processor is activated when a macro block is processed.

3) One or more macro blocks, as long as they lie on the diagonal line as shown above, can be started at the same time.

4) When the upper half of a macro block M is completed, the adjacent blocks to the right and to the bottom, if they exist, can be started, and when the adjacent blocks are half-way completed, the entire block M is completed.

.
The breakdown of the time is according to the diagonals running across each macro block.  When only half a macro block is processed, as shown at t1/2, it is assumed that half the time has expired compared to a full block being processed.

We note that, from t0 to t1/2, there is 1 processor active.  Starting at t1/2, the blocks to the right and below of the current block can start processing, since there is enough information for computing.  In general, there can be as many processors active as the macro blocks that are traversed by the diagonal line at any point in time.  The pattern is as follows:
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Compared to the straight MBRP algorithm, the second algorithm takes half the time to run through (assuming there are as many processors as needed) and utilizes more processors at any one time and frees them more quickly.  Here is the proof:


Given an n x m sub-division of an MPEG4 frame, assuming the time to process


1 macro block diagonally is equivalent to processing it laterally, as in the original


MBRP algorithm, the longest diagonal is defined by the smaller dimension:

min(n, m). Note that the diagonal blocks cannot be processed in parallel because

of the dependence of adjacent blocks.  The time used by the processor assigned to 

process the longest diagonal is min(n, m).  If the sub-divided blocks are processed diagonally from left to right, when a block is half way completed, the adjacent blocks (to the right and below) can be started in parallel.  So, the adjacent blocks will always be ½ time behind the diagonal block.  If n =/= m, then there will be m – n extra adjacent blocks at the end, either to the right or below the last diagonal block.  By time min(n, m), the last diagonal block is completed, and ½ of the next adjacent is also completed.  This adjacent block will take an additional ½ time to complete, and ½ of the next adjacent block is also completed.  So,  if there remain |n – m| adjacent blocks, it will take an additional ½ (| n – m|) time to complete each of the adjacent blocks to the diagonal that cannot be processed in parallel. Then, the total time required is min(n, m) + ½ (| n – m |).  If n = m, then the total time is n. 

As is with the straight MBRP algorithm, the diagonal-MBRP algorithm also applies a single processor for processing each macro block.  Therefore, the total processor usage is still n * m.
Assuming it also takes 1 uniform unit of time to process 1 macro block diagonally, the average utilization of the processors is

(n * m) / (min(n, m) + ½ (| n – m |) 

If n = m, then we have  n2/n = n, an average utilization of n processors per

time t.

if n =/= m, then the average utilization of the processors actually grows,

since (n * m) / min(n, m) =  max(n, m), for all integers n,m > 0.  
Therefore, (n * m) / (min(n, m) + ½ (| n – m |) > max(n, m).

Referring to the properties of the diagonal algorithm, the maximum number of 
macro blocks that can be started simultaneously is related to the maximum number of blocks in a diagonal, which is min(n, m).  As min(n, m) macro blocks are processed half way, another min(n, m) macro blocks can be started.  Therefore, the peak processor utilization is <= 2 * min(n, m).
For n, m > 1, The total time for completing the entire frame with the original MBRP algorithm is 2n + m - 2 > 2 * min(n, m) [ref].  From the following ratio
min(n, m) + ½ (| n – m |) / (2n + m – 2)
we see that for n = m, the diagonal algorithm improves the performance by an order of at least 2.    But when min(n, m) + ½ (| n – m |) => (2n + m – 2), the diagonal algorithm loses the advantage.  When

min(n, m) + ½ (| n – m |) = (2n + m – 2) > 2 * min(n, m), for n, m > 1

min(n, m) + ½ (| n – m |) > 2 * min(n, m)


| n – m | > 2 * min(n, m)

So, the above equation must be maintained for the diagonal algorithm to be more efficient than the straight MBRP.
Comparing the processor utilization,  we have


max(n, m)  / [(n * m)/(2n + m - 1)] => max(n, m) / [max(n, m)/2]

So, the modified, diagonal processing on the average utilizes more than 2 times the processors.   
Most significantly, we can see that there is an alignment of the processor utilization with the dimension of the matrix with the diagonal process.  However, that comes at a price – that at the peak of processor utilization, 2 * min(n, m) processors may be required to run at the same time.  With the original MBRP, at most lower((m – 1)/2) + 1 processors are required for an n x m matrix.  The diagonal algorithm requires about 4 times the number of processors for peak usage.

The average processor utilizations of the two algorithms are

(n * m) / (2n + m – 2)


straight MBRP

(n * m) / min(n, m) + ½ (| n – m |)   
Diagonal MBRP
We can then conclude the diagonal algorithm is more efficient in processor utilization as long as 
min(n, m) + ½ (| n – m |) < 2 * min(n, m) <= 2n + m - 2 

(
| n – m | < 2 * min(n, m)
To show that the algorithm actually works, we examine the requirements for the original MBRP algorithm:

A macro block X is ready for processing, if and only if the PMV blocks for X have already been processed, as shown in the table below, where the PMV blocks are marked

a, b, and c.
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With the modified diagonal algorithm, we claim that the left upper corner of x is ready for processing, if and only if both blocks a and b have processed past their respective upper halves:
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This can be shown graphically by magnifying the inter-dependent blocks:

	
	b
	c

	a
	x
	


Clearly, the part of macro block x that is marked y is ready for processing, because y’s “micro”-PMV blocks have already been done.  As the diagonal process continues, all of x will be processed under the same condition.

There is an obvious tradeoff in communication:  In the original MBRP algorithm, each PMV block completes processing and communicates all the required information all at once to the MV block.  In the Diagonal-MBRP, there is a continuous stream of small amount of information being sent to the MV block.  The total amount of information from the PMV blocks can be assumed to be the same for the MBRP and D-MBRP cases.

Then if the communication cost is linear in respect to the amount of data, then the D-MBRP algorithm has an advantage of load-balancing and scheduling the processors more efficient ly.

To show that the diagonal MBRP method is the optimal procedure to compress a sub-divided MPEG4 frame in terms of time and utilization of processors, we refer to the diagram below:


	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	


Note that all the direct diagonal blocks cannot be processed simultaneously, because each diagonal block except the first relies on information from at least the block above and the block to the left.  In order for any information to be available for an diagonal block that is not the first block, the previous diagonal block has to be completely processed.  Therefore, in order to completely process n diagonal blocks, at least n time units are required.  In order to complete an MPEG4 frame that is sub-divided into n x n macro blocks, the n diagonal blocks must be processed, and that will take at least n time units.

Thus, the optimal time for processing the n x n matrix is n.

As shown before, the average utilization of processors over time for the diagonal-MBRP method is n.  Now, suppose there is another method that has utilization of n + 1 or better and spends the same time n for completing the entire MPEG4 frame, then, total processor usage for the entire time is n(n + 1) = n2 + n.  Assuming we have unlimited number of processors available, and we map a different processor for each different macro block, then for an n x n matrix, there are at most n2 that are necessary for processing as many macro blocks.  It is not possible to map more than n2 processors in total.
The public code for compressing a standard MPEG4 image is too big and too complex to modify.  Instead of making the code work for a “diagonal traversal” for the macro blocks in the Diagonal-MBRP algorithm, we can apply the same code on the transformed MPEG4 image.  The transformation is just re-ordering the sequence of compressing.  Given an MPEG4 macro block A, we mark the units of information as follows (assuming a 4 x 4 macro block):


The processing order of A by the original MBRP algorithm is 


0 1 2 3 4 5 6 7 8 9 A B C D E F

Now if we want to apply the Diagonal-MBRP algorithm, we want to process the same data in a “dovetail” manner – ie the numbered units are processed in the diagonal order:


0 1 4 2 5 8 3 6 9 C 7 A D B E F

As mentioned above, we do not want to change the encoding code.  Instead, we pre-process each macro block and transform the positions of the data to achieve our purpose: 

For every macro block A, we transform B in the manner shown below:


      A




 B


Now, using the same encoding program, the processing of B simulates a diagonal traversal of A.  Moreover, we note that 

After unit 3 is processed , the block to the right can start processing by another core.

After unit C is processed, the block below can start processing by another core.

The transformation algorithm is described below:

First, we note that if we take any n x n macro block image, we can sub-divide the data units in a row-column format.  Thus, for matrix A below, unit 0 occupies position (0,0),

Unit 1 occupies (0,1), unit 4 occupies (1,0), etc.


A

We also note that, if we rotate the matrix 45 degrees to the right, and mark each unit with the (row,column) designation, we see a pattern similar to the Pascal Triangle:




(0,0)



         (1,0)  (0,1)



    (2,0) (1,1) (0,2)



(3,0) (2,1) (1,2) (0,3)



    (3,1) (2,2) (1,3)



         (3,2)  (2,3)




(3,3)

Counting from top to bottom, right to left, the sequential order of this pattern is

(0,0) (0,1) (1,0) (0,2) (1,1) (2,0) (0,3) (1,2) (2,1) (3,0) (1,3) (2,2) (3,1) (2,3) (3,2) (3,3) 

Which matches the order we want after the transformation:


0 1 4 2 5 8 3 6 9 C 7 A D B E F

To generalize the transformation, we present the following algorithm:

Let L = level which describes the current row of the above figure.  We start

with L = 1, so that the value of L corresponds to the number of units in that level, if 

L <= n, the dimension of the macro block.  If L > n, then the number of units on that level is denoted by 2n – L. 

So, given macro block A, 

1) If (n < 1) exit





check dimension

2) L = 1, row = 0, column = L- 1, pos = 0, cnt = 0
initialize values

3) Array[pos] = A(row,column)



value in the sequential array

4) pos++, cnt++

5) if (cnt == L)  L++, cnt = 0, column = L - 1, row = 0
next level

              else  column--, row++

6) if (L <= n) goto 3






7) row++, row_save = row, column_save = column

8) array[pos] = A(row, column)

9) pos++, cnt++

10) if (cnt == 2n – L) L++, cnt = 0, row = row_save + 1, row_save = row, column =     

                                                                                                              column_save

11)                    else    column--, row++

12) if (L == 2n) exit




done!

13)            else  goto 8
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