                                           Loose Bounds for Chaitin’s Maximum Unknowable

                                                            Tak Yin Wong

                                                                 11/01/01

In Chaitin’s book, he explains that OMEGA – the probability that any random program will halt - is the maximally unknowable, since it is irreducible and every bit is random and unknown:  “…the answers have no structure, they look like independent tosses of a fair coin , even though each answer is well-defined mathematically, ….  Even if you knew all the even bits of OMEGA it wouldn’t help you to get any of the odd bits.  Even if you knew the first million bits, it wouldn’t help you to get to the next one.”

Chaitin presents an abstract method to obtain the value of OMEGA:  “Generate a program by tossing a coin for each bit…. Every time the computer says I want another bit of the program, you flip the coin.”  The value of  OMEGA is obtained by adding ½k every time a k-bit program thus generated halts.  Of course, this value is unobtainable in its entirety because, from the fundamental theory of computation, no machine can decide if a random k-bit program actually halts.

The key to Chaitin’s above procedure is that the computer he has chosen is self-delimiting – ie.  It knows when it has enough for a program and stops requesting more bits for the program.  This is not an issue in practice, since the chosen Universal machine can generate a random value a priori for stopping to accept more bits – whatever has been generated by flipping the coin so far will be run as a program.   In practice, the Universal machine will have an upper limit of the maximum size of the program it can handle.  This limitation does not alter Chaitin’s assertion the OMEGA is unknowable in general.

Once we have chosen a Universal machine M, we can enumerate all the possible programs for the machine of P size, for P >= 1.    Note that this machine M accepts all sequences of legitimate instructions as a program – ie.  M executes the instructions regardless if the overall semantics of the program makes any sense.  WLOG, assume that this machine uses a GOTO statement for loops and recursions.  As we enlist each program, we throw out any programs that have any GOTO statement.  So we only have programs that are completely iterative and are guaranteed to halt as the instructions are exhausted.   Assume also that the instruction size I is uniform for this machine.  There would be 2I possible instructions in binary, and a program of  size P will have P/I instructions.  The number of programs of P size without any GOTO statements will be (2I – 1)P/I.  Thus a lower bound of the probability of a random program of size P that will halt for sure in machine M is Prob(H) = 1/((2I-1) P/I)).

Next we look at the number of possible programs of size P that clearly will NOT halt.  These programs are ones that have GOTO statement(s) that form a closed circuit – ie. GOTO statements that is self-referential or have a circuitous path with other GOTO statements - and thus will never halt.   In our chosen machine the number of possible programs with this type of statements forming a Hamilton Circuit in a program of size P will be SUM{n=1,…,P/I}(P/I choose n)!, n being the number of GOTO statements forming a closed circuit.  A lower bound of the probability of a random program that will not halt in machine M is Prob(~H) = 1/(SUM{n=1,…,P/I}(P/I choose n)!.

An upper bound for Prob(H) can be achieved by 1 – Prob(~H), and vice versa.  For a chosen machine, these might conditionally give information on the bit pattern of the value of OMEGA.  By summing up the lower bounds and upper bounds of programs of all sizes for machine M, this is the inequality:

          SUM{P=,…}(1/((2I-1)P/I))  <=  OMEGA  <= SUM{P=,…}1/(SUM{n=1,…,P/I}(P/I choose n)!).

